Practical Management of Imatinib in Gastrointestinal Stromal Tumors

Tamara Barnes, RN, MSN, CNS, AOCNS®, and Denise Reinke, APRN, BC, AOCN®

Gastrointestinal stromal tumors (GISTs) have an incidence of 7–15 occurrences per million people. Tyrosine kinase inhibitors (TKIs) have significantly improved clinical outcomes as part of multidisciplinary disease management. The authors will review developments in the management of GISTs, including diagnosis, risk stratification, prognosis, and treatment with imatinib. Imatinib is recommended for postsurgical adjuvant therapy and, where appropriate, neoadjuvant therapy. Clinical practice guidelines recommend first-line imatinib for metastatic and unresectable GISTs based on trials showing efficacy at the standard dose (400 mg per day) and at higher doses of 600–800 mg per day. Oncology nurses play a key role in patient management through (a) patient education about GISTs and their treatment including the use of imatinib, (b) timely scheduling of radiologic follow-up to assess treatment response, (c) monitoring treatment adherence, (d) helping to sustain imatinib dose intensity by monitoring toxicities and drug interactions and by counseling patients to prevent treatment interruptions, and (e) collaborating with the multidisciplinary medical team to pursue imatinib dose escalation or other treatment options if patients have primary or acquired mutation-based resistance to imatinib.

At a Glance

△ Gastrointestinal stromal tumors (GISTs) are characterized by mutations in the KIT proto-oncogene that lead to abnormal expression of a protein, KIT receptor tyrosine kinase.

△ Multidisciplinary management of GISTs currently includes targeted therapy with the oral tyrosine kinase inhibitor imatinib.

△ Oncology nurses can help sustain the effectiveness of imatinib therapy by delivering individualized patient education that promotes understanding of the disease and its treatment.

Most GISTs (85%–95%) are driven by oncogenic mutations in either KIT or platelet-derived growth factor receptor alpha protein (PDGFRα). These gain-of-function mutations lead to the constitutive activation of the KIT and PDGFR receptors, which result in subsequent cell proliferation and the prevention of apoptosis (programmed cell death) (Fletcher et al., 2002). The observation that most GISTs express KIT or PDGFRα led to the development of the targeted oral therapy imatinib, a tyrosine kinase inhibitor (TKI) (Joensuu et al., 2002). Imatinib inhibits the constitutive activation of KIT and PDGFRα tyrosine kinase, which inhibits tumor growth and induces tumor regression (Hirota et al., 1998; Rubin et al., 2001).