SINCE 2011, TREATMENT FOR UNRESECTABLE OR METASTATIC MELANOMA has rapidly evolved, with several new agents approved in the United States, including vemurafenib (Zelboraf®), dabrafenib (Tafinlar®), trametinib (Mekinist®), cobimetinib (Cotellic®), ipilimumab (Yervoy®), nivolumab (Opdivo®), pembrolizumab (Keytruda®), and talimogene laherparepvec (T-VEC) (Imlygic®). Generally, these agents fall into two groups: (a) targeted therapies (orally administered agents that directly inhibit v-Raf murine sarcoma viral oncogene homolog B [BRAF] and mitogen-activated protein kinase [MAPK] kinase [MEK]) and (b) immunotherapies (immune checkpoint inhibitors targeting cytotoxic T lymphocyte–associated protein 4 [CTLA4] and programmed death 1 [PD-1]) administered via IV to indirectly activate the immune system. T-VEC is a unique modified viral therapy injected directly into melanoma lesions in patients with unresectable melanoma that has recurred following surgery.

These novel therapies have transformed treatment for metastatic melanoma, but they pose a challenge to the oncology nursing community because of their unique adverse event (AE) profiles. Early recognition of treatment-related toxicity and prompt intervention are critical to improving patient outcomes; therefore, anticipatory guidance and education about treatment-related AEs are a crucial part of patient care. Oncology nurses play a vital role by ensuring that patients understand their diagnosis, treatment recommendations, and management plan.

Guidelines for the care of patients receiving immune checkpoint inhibitors for the treatment of metastatic melanoma have previously been outlined (Rubin, 2012, 2015). This article aims to provide nurses with an overview of the care of patients with BRAF-mutant metastatic melanoma receiving targeted therapies, with a focus on management strategies for common and serious AEs.

MAPK Pathway: BRAF and MEK Inhibitors
About 50% of cutaneous melanomas have mutations in the BRAF gene (Davies et al., 2002; Jakob et al., 2012). BRAF is a key signaling protein at the top of the MAPK pathway that links extracellular signals to intracellular machinery controlling cellular growth, proliferation, differentiation, migration, and apoptosis.