Significant variability exists in normal tissue reactions in patients with cancer receiving radiotherapy, with a subpopulation exhibiting increased toxicity to ionizing radiation. Genomic studies have proposed that single nucleotide polymorphisms in DNA repair genes, cytokines, and reactive oxygen species may play a role in clinical radiosensitivity. Additional research examining the association between genetic variants and radiation-induced inflammation and fibrosis may spur the development of targeted therapy in radiation oncology, which could increase cure rates and limit toxicity. As more people become long-term cancer survivors, oncology nurses must aggressively assess and manage late treatment side effects to optimize patient functioning and quality of life. The purpose of the current article is to describe the effect of ionizing radiation on normal and irradiated tissue, discuss genetic mutations that are proposed to influence radiosensitivity, and identify future areas of research on the association between genetics and radiation toxicity.

Carol Proud, MSN, CRNP, ANP-BC, AOCNP®, is an oncology nurse practitioner in the Department of Radiation Oncology at the University of Pennsylvania Medical Center in Philadelphia. The author takes full responsibility for the content of the article. The author did not receive honoraria for this work. The content of this article has been reviewed by independent peer reviewers to ensure that it is balanced, objective, and free from commercial bias. No financial relationships relevant to the content of this article have been disclosed by the author, planners, independent peer reviewers, or editorial staff. Proud can be reached at carol.proud@uphs.upenn.edu, with copy to editor at CJONEditor@ons.org. (Submitted April 2013. Revision submitted July 2013. Accepted for publication July 15, 2013.)

Key words: genetics; genomics; late effects of cancer treatment; radiation therapy

Digital Object Identifier: 10.1188/14.CJON.185-189

Radiosensitivity is influenced by the effects of ionizing radiation on intracellular DNA, leading to cellular damage or death via double-strand breaks. Radiation also triggers the release of multiple cytokines, which are regulatory proteins that exert their intracellular effects via receptors on immunomodulatory cells (Martin, Lefaix, & Delanian, 2000). About 5%–10% of patients who receive radiation therapy exhibit a heightened sensitivity to conventional radiation doses (Gatti, 2001; Ozsahin et al., 2005; Popanda, Marquardt, Chang-Claude, & Schmezer, 2009). To limit toxicity, standardized dosing regimens have been developed and extensively researched for safety and efficacy. Advances in genetic research would enable radiation oncologists to design personalized therapy and optimize treatment plans for each patient, which would increase efficacy and minimize acute and late side effects (Ghazali, Shaw, Rogers, & Risk, 2012; Henríquez-Hernández et al., 2012). The current article describes the effect of ionizing radiation on normal and irradiated tissue, discusses genetic mutations that are proposed to influence radiosensitivity, and identifies future areas of research on the association between genetics and radiation toxicity.
Pathophysiology of Radiation-Induced Tissue Damage

Radiation-induced inflammation and subsequent fibrosis are initiated by mediators such as interleukin-1, interleukin-6, and tumor necrosis factor alpha (TNF-α), which are produced from activated monocytes, macrophages, endothelial cells, and fibroblasts. Profibrotic proteins, such as transforming growth factor beta (TGF-β) and connective tissue growth factor (CTGF), control fibroblast production, collagen growth, and deposition of extracellular matrix. Their actions are antagonized by TNF-α and interferon gamma (Leask & Abraham, 2004; Yarnold & Brotons, 2010) (see Table 1). In irradiated tissue, these proliferative and remodeling processes are dynamic and promote the development of a chronic fibrotic state in skin, soft tissue, blood vessels, muscles, and organs in the targeted region.

Radiation-induced fibrosis can lead to clinical toxicities that include pain, altered cosmesis, limited range of motion, decreased functional capacity of solid organs and structures, fistulas, and obstructions of hollow organs (see Figure 1). To limit morbidity, radiation oncologists have sought to identify radiosensitive patients prior to treatment. Researchers have proposed that genetic factors confer an increased risk of developing treatment-related toxicities, and the completion of the Human Genome Project in 2003 has accelerated the understanding of the association between genetics and human radiosensitivity (Barnett et al., 2009).

Radiogenomics is defined as the study of genetic variants that influence individual responses to radiation therapy (Andreason, Alsner, & Overgaard, 2008; Rosenstein, 2011). In 1967, a genetic predisposition to radiosensitivity was initially identified in a pediatric patient with lymphoma with ataxia-telangiectasia, an autosomal recessive disorder characterized by cerebellar impairment, immunodeficiency, lung disease, and an increased risk of malignancy (Gotoff, Amirmokri, & Liebner, 1967). Additional research led to the discovery of other genetic mutations that increase radiation toxicity (e.g., Nijmegen breakage syndrome, Fanconi anemia). Patients with these disorders exhibit a generalized sensitivity to all forms of radiation (e.g., cosmic, environmental, diagnostic radiographs) as well as radiomimetic compounds (e.g., bleomycin). Although these disorders are rare, about 1% of the general population may be ataxia-telangiectasia carriers and at risk of morbidity or mortality from radiation exposure (Swift, 1994).

Prior to the initiation of the Human Genome Project in 1990, researchers used the candidate gene approach to investigate genetic variants in families who appeared to have an inherited pattern of disease (Barnett et al., 2009). Candidate gene studies are based on existing information about a gene and its potential biologic or functional impact on a disease; the researcher also must have knowledge of the pathophysiology of the disorder being studied (Rosenstein, 2011). This research led to the discovery of the BRCA1 and BRCA2 genes, as well as the mutation that causes Lynch syndrome (hereditary nonpolyposis colorectal cancer). However, limitations exist in the candidate gene approach. The approach assumes that the researchers' hypothesis is correct about the association between a selected gene and its function, and only a single gene is examined. However, most disease states are proposed to be influenced in a polygenic fashion (Andreason, Alsner, & Overgaard, 2002; Popanda et al., 2009).

Genome-wide association studies use microarray technology to scan thousands of gene sequences simultaneously without prior knowledge of a gene’s position or function. Samples then are analyzed to identify markers that are commonly found in affected individuals, which enables researchers to examine the influence of multiple genetic variants on common and complex disorders (Parliament & Murray, 2010). Genome-wide association studies are the cornerstone of research to eliminate false-positive findings, determine causative agents, and design clinically relevant translational research projects (Masny, Jenkins, & Calzone, 2010). The first genome-wide association studies in oncology were performed on prostate, breast, and colorectal cancer populations in 2007.

The most common mutation identified in candidate gene and genome-wide association studies are single nucleotide polymorphisms (SNPs), a DNA sequence variation in which one of the nucleotides (i.e., adenine, cytosine, guanine, or thymine)
is altered. The human genome is virtually identical among individuals, with about 0.1% of genetic differences from SNPs (Parliament & Murray, 2010). Most SNPs are low-penetrance, harmless changes in DNA composition that make each individual unique, as compared to highly penetrant variants that are rare but cause clinical symptoms of disease.

In candidate gene and genome-wide association studies, researchers have identified several SNPs that are proposed to play a role in radiation sensitivity by damaging DNA recognition or repair, promoting radiation-induced inflammation and fibrosis, or affecting scavenging of reactive oxygen species (Fernet & Hall, 2008; West, Dunning, & Rosenstein, 2012).

Genetic Mutations and Double-Strand DNA Repair

DNA can be damaged by multiple agents, including ionizing radiation affecting one or both helical strands. When damaged, DNA can be repaired, enter a state of dormancy (senescence), continue to divide without regulation, or undergo programmed cell death (apoptosis). The ATM gene is responsible for generating proteins to repair DNA and regulating replication until corrected (Andreasen et al., 2002). SNPs of this gene are responsible for the generalized radiosensitivity of those affected with ataxia-telangiectasia, but ATM mutations also have been associated with toxicity in patients with breast, prostate, and lung cancers who have been treated with radiation therapy (Gatti, 2001; Rosenstein, 2011).

In patients with prostate cancer treated with high-dose external beam radiation therapy, a higher incidence of proctitis and cystitis were associated with ATM mutations (Hall et al., 1998). In Cesaretti et al.’s (2005) study, ATM mutations were associated with an increased rate of rectal bleeding and erectile dysfunction in patients undergoing brachytherapy. However, two subsequent studies failed to find a link between ATM SNPs and radiotoxicity in patients with prostate cancer (Damaraju et al., 2006; Meyer et al., 2007). Conflicting results also were noted in patients with breast cancer treated with radiation therapy, with studies associating variant ATM with the development of fibrosis and other subcutaneous tissue effects (Ho et al., 2007; Ianuzzi, Atencio, Green, Stock, & Rosenstein, 2002). However, other studies reported no increased risk of early or late skin toxicities (Andreasen, Alsnor, Overgaard, Sorensen, & Overgaard, 2006; Bremer et al., 2003). All of those studies were performed using candidate gene SNPs and were not replicated in subsequent research on large patient cohorts (Parliament & Murray, 2010; Rosenstein, 2011).

XRCC genes also are proposed to function in single- and double-strand DNA damage caused by radiotherapy. SNPs of XRCC have been investigated in candidate gene studies for adverse effects, with XRCCI implicated for late fibrosis and telangiectasia in patients with breast cancer treated in radiation therapy (Andreasen, Alsnor, Overgaard, & Overgaard, 2003), but a large replication study noted no correlation (Andreasen et al., 2006). In patients with head-and-neck cancer treated with radiation therapy, XRCCI mutations have been associated with acute mucositis and dermatitis (Pratesi et al., 2011) and XRCC3 mutations with the development of severe dysphagia after intensity-modulated radiation therapy (Werbrouck et al., 2009).

Single Nucleotide Polymorphisms of Pro-Inflammatory and Profibrotic Agents

Several cytokines and growth factors are proposed to cause molecular changes in target tissues. TGF-β is a multifunctional cytokine that plays a vital role in radiation-induced inflammation and fibrosis. Ionizing radiation stimulates production of the polypeptide TGF-β1 from various epithelial and endothelial cells, with activated TGF-β1 increasing synthesis of extracellular matrix components while inhibiting proteolytic activity (Leask & Abraham, 2004; Yarnold & Brotons, 2010).

SNPs of TGF-β1 have been implicated in the development of radiation-induced fibrosis in several cancers, including head and neck, endometrial, cervical, and lung. In patients with head-and-neck cancer, polymorphisms of TGF-β1 were associated with a lower grade of skin fibrosis (Alsbeih, Al-Harbi, Al-Hadyan, El-Sebaie, & Al-Rajhi, 2010) but with a significantly greater risk of developing osteoradionecrosis in another study (Lyons et al., 2012). Variants of the TGF-β1 gene also have been correlated with late side effects in patients with endometrial and cervical cancers (De Ruyck et al., 2006). In patients with lung cancer treated with thoracic radiation alone or with concurrent chemoradiation, a lower risk of radiation pneumonitis was found in those with a TGF-β1 mutation (Yuan et al., 2009) and with an increased incidence of radiation esophagitis in another study (Guerra et al., 2012). A meta-analysis of 2,782 patients with breast cancer treated with radiation therapy reported no association between TGF-β1 SNPs and late radiation fibrosis (Barnett et al., 2012).
Single Nucleotide Polymorphisms of Reactive Oxygen Species

Reactive oxygen species are oxygen-containing molecules and are essential in mediating apoptosis, cellular homeostasis, and signaling, and they are a byproduct of mitochondrial transport during cellular respiration. Ionizing radiation increases intracellular reactive oxygen species production and causes damage to lipids, protein, and DNA in a process known as oxidative stress (Ghazali et al., 2012; Seong et al., 2010). Cells contain multiple substances (e.g., uric acid, vitamins C and E) and enzymes (e.g., catalase, superoxide dismutase) to prevent oxidative stress. Superoxide dismutase exerts substantial anti-inflammatory and antioxidant activity and may reduce fibrosis by preventing the conversion of fibroblasts to myofibroblasts (Yarnold & Brotons, 2010). Superoxide dismutase has been studied for its radioprotective effects, with animal models demonstrating decreased damage to lung and parotid tissue (Andreassen, 2005).

SNPs of superoxide dismutase have been examined in candidate gene studies for an association with radiation sensitivity and, like previous studies of other SNPs, have yielded conflicting results. Research on superoxide dismutase mutations have been performed primarily in patients with breast cancer who have been treated with radiation therapy, with most studies showing no association between superoxide dismutase variants and an increased risk of fibrosis, acute skin toxicity, or telangiectasia (Ahn et al., 2006; Andreassen et al., 2005, 2006).

Implications for Nursing

As cancer mortality rates decline, healthcare providers must manage the chronic effects of treatment aggressively. Oncology nurses should possess current knowledge of genomics and genomic research, including knowledge of possible radiation-induced toxicities, and act as advocates and patient educators throughout the cancer continuum. After treatment, nurses play a vital role in the collection of accurate toxicity data and assessment of side effects during follow-up care. In departments that conduct clinical research, nurses often participate in the study of novel agents to prevent or decrease radiation fibrosis. As more patients become long-term cancer survivors, nurses must promptly identify and refer patients requiring psychosocial support, palliative care, and rehabilitative or pain management services. Nurses should monitor for signs and symptoms of recurrent disease or secondary malignancies. Advances in radiogenomics and these interventions will optimize quality of life for patients with cancer and promote physical and psychologic well-being long after radiation therapy is completed.

Conclusions

Although radiogenomics is in its infancy, candidate gene and genome-wide association studies have identified several SNPs that are hypothesized to confer a higher risk of radiation toxicity. However, much of the research has yielded conflicting results or has been underpowered and not replicated in larger independent studies. Radiation oncologists can employ differing fractionation schedules and dose-volume variations to influence the development, timing, and severity of radiation therapy-mediated toxicity (Ghazali et al., 2012). In the past, a lack of consensus occurred on the methodology used to collect toxicity data and which grading scales should be selected (Alsner et al., 2008; West et al., 2012). Researchers also must consider the development of side effects that occur several years after completing radiation treatment to determine frequency and duration of data collection (Popanda et al., 2009). To address these concerns, the Radiogenomics Consortium was established in 2009 to perform additional research by collecting tissue samples, treatment plans, standardized toxicity scores, and patient outcome data from thousands of individuals treated with radiation therapy to create a database for future research (Barnett et al., 2012).

Patient variables that may influence individual response to radiation therapy include age, performance status, comorbidities, environmental exposures, and concurrent administration of chemotherapy (Andreassen et al., 2005). Genomics has the potential to shape personalized treatment in patients with cancer. Predictive assays would create a genetic risk profile to guide decision making by patients and healthcare providers. Proposed biomarkers of radiation sensitivity have focused on the role of T cells in repairing radiation-induced double-strand breaks. Studies using peripheral blood lymphocytes have determined that radiation toxicity is associated with decreased apoptosis in these cells, leading to delayed repair in irradiated normal tissue (Ozsahin et al., 2005; Schnarr, Boreham, Sathya, Julian, & Dayes, 2009). Additional research is needed to develop assays that are inexpensive, have high predictive value, and are generalizable to multiple cancer populations.

Various radioprotective agents have been used in clinical practice (e.g., amifostine, pentoxifyline in combination with vitamin E), but results have been mixed with reduction of fibrosis noted in some studies and refuted in others (Delanian, Porcher, Rudant, & Lefaux, 2005; Hensley et al., 2009). Researchers should work to develop pharmacologic and nonpharmacologic strategies to treat radiation-induced inflammation and fibrosis.

References

(Radiogenomics: The Promise of Personalized Treatment in Radiation Oncology? continues on page 198.)

