Emerging Issues on the Impact of Smoking on Health-Related Quality of Life in Patients With Lung Cancer and Their Families

Karen Kane McDonnell, PhD, RN, OCN®, Linda F.C. Bullock, PhD, RN, FAAN, Patricia J. Hollen, PhD, RN, FAAN, Janie Heath, PhD, APRN-BC, FAAN, and Benjamin D. Kozower, MD, MPH

Compelling evidence exists that continued smoking after a diagnosis of lung cancer adversely affects treatment effectiveness, survival, risk of recurrence, second malignancy, and health-related quality of life (HRQOL). The importance of HRQOL to patients with cancer and their families has been well documented. Because of increasing evidence of the benefits of smoking cessation, more research has focused on the impact of smoking on HRQOL. Smoking is a behavior that clusters in families; patients who smoke are likely to have family members who smoke, and together they experience impaired HRQOL. This article describes the evidence regarding HRQOL measurement in individuals diagnosed with lung cancer and their family members who smoke and explores the implications for nursing practice. Oncology nurses are in a critical position to advocate for the integration of HRQOL assessment into clinical settings, monitor patient and family member smoking status and environmental tobacco smoke exposure, and support development of smoking cessation interventions to enhance HRQOL.

Karen Kane McDonnell, PhD, RN, OCN®, is an assistant professor of nursing in the College of Nursing at the University of South Carolina in Columbia; Linda F.C. Bullock, PhD, RN, FAAN, is the associate dean for research, Patricia J. Hollen, PhD, RN, FAAN, is a professor, Janie Heath, PhD, APRN-BC, FAAN, is the associate dean of Academic Programs, all in the School of Nursing, and Benjamin D. Kozower, MD, MPH, is an associate professor of surgery in the University of Virginia Health System, all at the University of Virginia in Charlottesville. The authors take full responsibility for the content of the article. Funding was provided through a doctoral degree scholarship in cancer nursing from the American Cancer Society (No. 121284-DSCN-11-199-01-SCN). The content of this article has been reviewed by independent peer reviewers to ensure that it is balanced, objective, and free from commercial bias. No financial relationships relevant to the content of this article have been disclosed by the independent peer reviewers or editorial staff. McDonnell can be reached at karenkm@mailbox.sc.edu, with copy to editor at CJONEditor@ons.org. (Submitted May 2013. Revision submitted August 2013. Accepted for publication August 8, 2013.)

Key words: lung cancer; smoking; health-related quality of life
Digital Object Identifier: 10.1188/14.CJON.18-02AP

Lung cancer is the most common cancer worldwide. The five-year survival rate for individuals with lung cancer in the United States is 16%, but that percentage increases to 53% for individuals with localized lung cancer. Small cell lung cancer (SCLC) is less prevalent and has a lower five-year survival rate (6%) compared to non-small cell lung cancer (NSCLC), which accounts for 85% of lung cancer diagnoses and has an 18% five-year survival rate (American Cancer Society, 2013). With the advent of computed tomography screening procedures for the early detection of lung cancer, combined with improved treatments, the lung cancer survivor population is likely to increase (National Lung Screening Trial Research Team, 2011).

As a patient-reported outcome, health-related quality of life (HRQOL) is an important aspect of every patient’s condition, and a critical outcome in cancer treatment and research. HRQOL is a multidimensional and dynamic construct that typically incorporates the influences of physical, functional, psychological, social, and spiritual domains on an individual’s subjective perception of health and well-being (Gralla & Hollen, 2011).

Smoking and Lung Cancer

A substantial amount of research addresses the impact of smoking on HRQOL in the general population (Hays, Crogan, Baker, Cappelleri, & Bushmakin, 2010; Sarna, Bialous, Cooley, Jun, & Feskanich, 2008; Tillman & Silcock, 1997; Wilson, Parsons, & Wakefield, 1999). HRQOL is known to be lower in individuals who smoke cigarettes regularly, and even lower in...
those who smoke more heavily and for a longer time. Compelling evidence exists that continued smoking after a cancer diagnosis has adverse effects on HRQOL as well as on treatment effectiveness, survival, and risk of second malignancy or recurrence (Browman et al., 2002; Dresler & Gritz, 2001; Fox, Rosenzweig, & Ostroff, 2004; Jensen, Jensen, & Grau, 2007; Krueger & Rohrich, 2001; Moller, Villebro, Pedersen, & Tonnesen, 2008; Parson, Daley, Begh, & Aveyard, 2010). Most patients diagnosed with lung cancer have a smoking history, and many are current smokers (Cox, Africano, Tercyak, & Taylor, 2003; Park et al., 2012). Continued smoking after a cancer diagnosis was first associated with a poorer HRQOL in a study of 105 patients with head and neck cancer (Gritz et al., 1999). The results showed that, at the one-year follow-up, ex-smokers reported a higher HRQOL than patients who continued smoking.

Four reviews have examined HRQOL in relationship to lung cancer. The first review spanned 25 years (1970–1995) and confirmed the value of HRQOL measurements in this population. However, smoking status was not described (Montazeri, Gillis, & McEwen, 1998). Two other reviews examined HRQOL methodologies in randomized, controlled trials during a 30-year span (1980–2010). Smoking status was not described in those reviews either (Bottomley, Efficace, Thomas, Vanvoorden, & Ahmedzai, 2003; Claassens et al., 2011). Tobacco use and environmental tobacco smoke exposure have been described as the missing drug intervention in clinical trials because they often are undocumented or not considered as potential variables (Gritz, Dresler, & Sarna, 2005). In one cross-sectional study of cancer treatment intervention trials (N = 68), only 7% reported routine collection of tobacco use information at baseline and no trial reported monitoring tobacco use during treatment follow-up.

Only a few studies have examined HRQOL in patients with lung cancer who smoke. Fewer studies have examined the effect of smoking on the HRQOL of family members. A systematic review of seven studies and one abstract from 1995–2010 examined the effect of smoking on HRQOL in patients with lung cancer (Rowland, Eiser, Rowe, & Danson, 2012). Three studies showed that smokers reported significantly impaired HRQOL compared with patients who never smoked or quit smoking (Browning, Ferketich, Otterson, Reynolds, & Wewers, 2009; Garces et al., 2004, 2009). Since the Rowland et al. (2012) review, additional studies with significant findings have been published and will be included in this review. The purposes of this article are to describe the evidence of the impact of smoking cigarettes on HRQOL in patients with lung cancer and document emerging issues, including the impact of smoking on the HRQOL on family members, as well as environmental tobacco smoke exposure.

### Symptomatology of Lung Cancer and Smoking

Experts agree that the experience of symptoms and symptom distress affects HRQOL (Borneman & Economou, 2012). A small percentage (5%–10%) of patients with lung cancer are asymptomatic at diagnosis (Wozniak & Gadgeel, 2010). In others, presenting symptoms relate to local, regional, or distant effects of tumors. Cough, dyspnea, wheezing, chest discomfort or pain, bronchorrhea, and fatigue are common (Tyson, 2012). Lung cancer treatment (i.e., surgery, radiation, and chemotherapy) may improve or worsen symptoms. Symptoms may be exacerbated by smoking or tobacco withdrawal. Withdrawal elicits various physical and psychological symptoms that can temporarily intensify symptom burden (see Table 1). Most withdrawal symptoms manifest within the first 1–2 days, peak within one week, and subside within 2–4 weeks (University of California Regents, 2012). Overall, patients with lung cancer experience more symptom distress than patients with other cancer types (Cooley, 2000). Therefore, the patient’s smoking status and environmental tobacco smoke exposure should be considered as possible factors affecting the intensity of their symptoms.

### Smoking Status and Tobacco Dependence

Although no universally accepted definition exists for smoking status or tobacco dependence,
clearly describing and classifying research participants is crucial to understanding and translating findings. In clinical practice, defining smoking status helps accurately identify smokers, assess the impact of smoking, and recommend treatment. Most studies included in the systematic review by Rowland et al. (2012) organized smoking behavior into only three categories: current, former, and never. Some researchers included a score calculated using the Fagerström Test for Nicotine Dependence (Heatherton, Kozlowski, Frecker, & Fagerström, 1991) to ascertain additional information regarding nicotine dependence levels. In a study by Chen et al. (2012), smokers were categorized by the timing of smoking cessation: early quitters (more than one year prior to diagnosis), recent quitters (one year or less prior to diagnosis), late quitters (more than one year post-diagnosis), or never quit. Because nicotine addiction is a complex chronic illness, smoking status is likely to vary over time. For example, a patient with a suspicious mass may make a decision to stop smoking prior to surgery, only to relapse

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Description</th>
<th>Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>EORTC QLQ-C30 (version 3)</td>
<td>Designed for use with a wide range of patient populations with cancer and is intended to be supplemented by more specific questionnaire modules.</td>
<td>Nine scales: one global health status (two items), five functional scales (physical, emotional, role, social, cognitive), plus three symptom scales: fatigue (three items), pain (two items), nausea and vomiting (two items), and six single items (dyspnea, appetite loss, insomnia, constipation, diarrhea, financial consequences of disease).</td>
</tr>
<tr>
<td>EORTC QLQ-LC13</td>
<td>Intended to supplement the EORTC QLQ-C30</td>
<td>One scale: lung cancer-related symptoms and treatment-specific symptoms, including coughing (one item), hemoptysis (one item), dyspnea (three items), sore mouth or tongue (one item), trouble swallowing (one item), tingling hands and feet (one item), hair loss (one item), experience of pain (three items), and pain medication (one item).</td>
</tr>
<tr>
<td>FACT-L</td>
<td>Four versions; version 4 adds two questions about smoking history and level of regret in regard to smoking.</td>
<td>Two parts: Part 1 is a 34-item core measure of general HRQOL (FACT-G) that has five subscales: PWB (seven items), SWB (eight items), EWB (six items), FWB (seven items), and relationship with the physician. Part 2 consists of the LCS (seven items), which focuses on shortness of breath, weight loss, clear thinking, coughing, good appetite, chest tightness, and easy breathing.</td>
</tr>
<tr>
<td>LCSS</td>
<td>Comes in an electronic version and a version for patients with mesothelioma.</td>
<td>Two instruments: One for patients and one for health professionals as observers. Both focus on physical and functional domains. The patient scale has nine items: six functional analog scales (appetite, fatigue, cough, dyspnea, hemoptysis, and pain) and three summation items related to total symptom distress, activity status, and overall HRQOL.</td>
</tr>
<tr>
<td>SF-12</td>
<td>Two versions: original and version 2</td>
<td>Two scales: PCS and MCS. Eight domains: physical functioning (two items), role limitations due to physical problems (two items), bodily pain (one item), general health status (one item), vitality (one item), social functioning (one item), role limitations due to emotional problems (two items), and mental health (two items).</td>
</tr>
<tr>
<td>SF-36</td>
<td>Two versions: original and version 2</td>
<td>Two scales: PCS and MCS. Eight domains: physical functioning (10 items), role limitations due to physical problems (four items), body pain (two items), general health perceptions (five items), vitality (four items), social functioning (two items), role limitations due to emotional problems (three items), mental health (five items), and reported health transition (one item).</td>
</tr>
</tbody>
</table>

EORTC QLQ-C30—European Organisation for the Research and Treatment of Cancer Quality of Life Core 30 Questionnaire; EORTC QLQ-LC13—European Organisation for the Research and Treatment of Cancer Quality of Life Lung Cancer 13 Questionnaire; EWB—emotional well-being; FACT-G—Functional Assessment of Cancer Therapy—General; FACT-L—Functional Assessment of Cancer Therapy—Lung; FWB—functional well-being; HRQOL—health-related quality of life; LCS—lung cancer subscale; LCSS—Lung Cancer Symptom Scale; MCS—mental component summary; PCS—physical component summary; PWB—physical well-being; SWB—social and family well-being.
TABLE 3. Research on HRQOL in Patients With Lung Cancer and Their Family Members

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample</th>
<th>Instruments</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balduyck et al., 2011</td>
<td>Prospective, longitudinal study in Belgium on patients with NSCLC (N = 70). Participants were recruited preoperatively and followed for 12 months. Fifty percent were current smokers and 8% were recent quitters (i.e., patients who stopped smoking between diagnosis and surgery).</td>
<td>EORTC QLQ-C30, EORTC QLQ-LC13</td>
<td>Recent quitters had a longer impairment in physical functioning (six months postoperatively, p = 0.01) and burden of dyspnea (three months postoperatively, p = 0.02); current smokers experienced no return to baseline physical (p = –0.01), role (p = 0.01), and social functioning (p = 0.02), as well as a persistent increase in dyspnea (p = 0.04) occurring in 12 months. Current smokers reported increased thoracic pain (p = 0.02) in 12 months and fatigue during the first three months postoperatively.</td>
</tr>
<tr>
<td>Browning et al., 2009</td>
<td>Prospective, longitudinal study in the United States with 51 patients (78% had NSCLC) recruited postoperatively and followed for six months. Sixty-eight percent had extensive disease and all were current smokers.</td>
<td>LCSS, FACT-L</td>
<td>The mean scores for the FACT-L and its components and for the LCSS corresponded with a lower (worse) HRQOL than reported mean scores in Garces et al. (2004).</td>
</tr>
<tr>
<td>Chen et al., 2012</td>
<td>Prospective, longitudinal study in the United States of 223 patients with SCLC (38% extensive disease). Fifty-three percent were current smokers (tobacco use within the same year as diagnosis). A matched control group (n = 334) was used.</td>
<td>LCSS</td>
<td>Smoking status had a significant impact on overall HRQOL and on each symptom when compared to a matched lung cancer-free control group; mean overall HRQOL in smokers was lower (worse) than controls (p &lt; 0.0001); late or never quitters reported the worst scores; recent quitters showed an improving trend in HRQOL.</td>
</tr>
<tr>
<td>Garces et al., 2004</td>
<td>Cross-sectional study in the United States with 1,028 patients, 92% of whom had NSCLC (77% had localized disease) and 8% had SCLC. Sixty-nine percent had limited disease and were recruited six months to three years after diagnosis. Twenty-four percent were current smokers at diagnosis and 30% continued to smoke.</td>
<td>LCSS</td>
<td>Smokers had significantly worse HRQOL than never smokers (p &lt; 0.0001); former smokers and abstinent smokers had HRQOL scores similar to never smokers; seven of the LCSS components (appetite, fatigue, cough, shortness of breath, lung cancer symptoms, illness affecting normal activities, and overall QOL) were clinically and statistically different between never smokers and smokers (p &lt; 0.001).</td>
</tr>
<tr>
<td>Garces et al., 2009 (abstract)</td>
<td>Prospective, longitudinal study in the United States of 869 patients who were followed for 11 years. Of those, 429 patients completed a short-term (less than three years) and long-term (more than five years) one-item HRQOL assessment. Six percent were current smokers and 75% were former smokers.</td>
<td>LCSS</td>
<td>The HRQOL of all smoking groups (never, former, and current) was different before the three-year survivor mark (p &lt; 0.0001) and declined significantly when assessed at the five-year mark (p &lt; 0.0001).</td>
</tr>
<tr>
<td>Lemonnier et al., 2011</td>
<td>Cross-sectional study in France of 171 patients newly diagnosed with an SPN. Sixty-six percent were current smokers and 23% had a malignant SPN, with 85% of those being current smokers. A general population comparison group (n = 17,750) was used.</td>
<td>SF-36</td>
<td>Those with a malignant SPN had significantly lower HRQOL scores on three of the eight domains: physical role (p = 0.04), emotional role (p = 0.02), and vitality (p = 0.04). These individuals also had lower mean scores for mental health (p = 0.06) and social functioning (p = 0.05). Compared to the general population, those with an SPN had a significantly lower HRQOL (p &lt; 0.001); smoking status was related to a lower mean score for all dimensions (p &lt; 0.001). These results did not differ by group (malignant versus benign).</td>
</tr>
<tr>
<td>Myrdal et al., 2003</td>
<td>Cross-sectional study in Sweden of 112 patients who underwent lung surgery. Eighty-four percent had stage I or II disease and 11% were current smokers.</td>
<td>SF-36</td>
<td>Smokers after surgery for lung cancer had significantly lower scores for mental health (p = 0.003), vitality (p = 0.027), and mental components summary (p = 0.003); a significant correlation was noted between reduced lung volume (less than 60% before surgery) and the physical summary components score (p = 0.05).</td>
</tr>
</tbody>
</table>

immediately after discharge. Therefore, assessing tobacco use and exposure at diagnosis and repeatedly throughout the continuum of care is important.

In addition, smoking status information usually is self-reported and smokers sometimes are reluctant to discuss their smoking status. Feelings of guilt and shame, fear of being stigmatized, or fatalism about their survival may influence the accuracy of self-reported smoking status (Cataldo, Jahan, & Pongquvan, 2011). Biochemical verification sometimes is used to objectively measure and confirm smoking status. Several verification procedures assess the presence of cotinine using urine, blood, or saliva; other procedures assess expired carbon monoxide levels. The costs and benefits of objective measurement need to be considered to determine if they are justified (Gorber, Schofield-Hurwitz, Hardt, Levasseur, & Tremblay, 2009).

### Health-Related Quality-of-Life Measurements

Evaluating HRQOL helps professional caregivers understand patient and family member experiences with the many issues involved in a cancer diagnosis. Measuring HRQOL also helps patients and family members to understand their own experiences over time and to communicate concerns. Numerous feasible, reliable, and valid HRQOL instruments exist. The Patient-Reported Outcome and Quality of Life Instruments Database (www.proqolid.org) lists more than 1,000 instruments. Instruments typically are classified as generic, disease-specific, or condition-specific. The current review used four HRQOL instruments (see Table 2). The Medical Outcomes Study SF-36® and SF-12® were used with patients and family members (Ware, 1996; Ware & Sherbourne, 1992). Disease-specific core measures included the Functional Assessment of Cancer Therapy–General

### TABLE 3. Research on HRQOL in Patients With Lung Cancer and Their Family Members (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample Description</th>
<th>Instruments</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozturk et al., 2009</td>
<td>Cross-sectional study in Turkey of 28 survivors (25–125 months) treated with radical or postoperative radiation therapy. Fifty-seven percent had stage II or III disease; 21% were exposed to environmental tobacco smoke within the prior week. Median consumption was 40 cigarettes per day (range = 0–102 per day).</td>
<td>EORTC QLQ-C30</td>
<td>The amount of smoking (number of pack years) was unrelated to HRQOL (p &gt; 0.05). Environmental tobacco smoke correlated with appetite loss (p = 0.02).</td>
</tr>
<tr>
<td>Sarna et al., 2006</td>
<td>Cross-sectional study in the United States consisting of 51 dyads. All were female patients with NSCLC, including 35% with advanced disease and 4% who were current smokers. Other members of the dyads were spouses (57%), male (65%), and current smokers (18%). The mean time since patient diagnosis was 22 months (SD = 17, range = 6–60). More than 75% of patients and about 50% of family members had a history of smoking.</td>
<td>SF-36</td>
<td>Family members were significantly more likely to be current smokers. Current smoker status was not significantly related to HRQOL in either the physical or mental components.</td>
</tr>
<tr>
<td>Sloan et al., 2012</td>
<td>Prospective, longitudinal study in the United States of 2,442 patients with NSCLC. Participants were examined within the first six months of diagnosis and yearly thereafter. Current smokers made up 13% of the sample; recent quitters made up 17% at the first QOL assessment.</td>
<td>LCSS (used only one item)</td>
<td>Clinically significant HRQOL deficits were reported by 510 patients (21%), including current smokers (16%) and recent quitters (20%). Smoking status, smoking cessation, and pack years smoked were associated with an overall QOL deficit (p &lt; 0.001) within six months of diagnosis.</td>
</tr>
<tr>
<td>Weaver et al., 2011</td>
<td>Cross-sectional study in the United States of 383 (52%) dyads where the patient was diagnosed with lung cancer. At baseline, 19% of patients and 25% of caregivers were current smokers; 7% of both dyad members were current smokers. The majority of caregivers were female, spouses, and household members.</td>
<td>SF-12</td>
<td>Family members who were members of dyads, where one or both members continued to smoke, reported worse mental HRQOL than nonsmoking dyads; dyad smoking was less strongly associated with physical HRQOL for patients and caregivers.</td>
</tr>
</tbody>
</table>
TABLE 4. Steps for Choosing a Health-Related Quality-of-Life Instrument for Research and Practice

<table>
<thead>
<tr>
<th>Step</th>
<th>Step 1</th>
<th>Compare the key features of the measures of interest</th>
<th>Focus Number of items Type of response format Time frame for assessment Domains assessed Inclusion of therapy-related side effects Other unique features Available languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Compare the feasibility of the instruments of interest</td>
<td>Self-reporting style Short administration time Low reading level Patient and staff acceptance Multi-site utility</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Evaluate the reliability of each measure</td>
<td>Internal consistency Stability Equivalence</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Examine the support for validity</td>
<td>Content validity Construct validity Criterion-related validity</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Determine whether a minimal important difference has been established</td>
<td>Interpretation or cut-off scores</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Refer to the normative data</td>
<td>Published statistical information describing scores from a defined population can act as a reference group and aid in interpretation</td>
<td></td>
</tr>
</tbody>
</table>


(FACT-G) and the European Organisation for the Research and Treatment of Cancer Quality of Life Core 30 Questionnaire (EORTC QLQ-C30), version 3.0. Condition-specific instruments focus on symptoms and specifically evaluate lung cancer characteristics. The Lung Cancer Symptom Scale (LCSS) and two lung cancer modules (EORTC QLQ-LC13 and FACT-L [version 3.0]) were used in combination with their respective core measure (Aaronson et al., 1993; Bergman, Aaronson, Ahmedzai, Kaasa, & Sullivan, 1994; Cella et al., 1995; Hollen, Gralla, & Kris, 1994).

Findings

Four studies (see Table 3) used generic instruments (SF-36 and SF-12) with patients with pulmonary nodules or localized disease, short- and long-term survivors, as well as their family members (Lemonnier et al., 2011; Myradal, Valtysdottir, Lambe, & Stahle, 2003; Sarna et al., 2006; Weaver, Rowland, Augustson, & Atienza, 2011). Two studies showed statistically significant findings. Patients with a pulmonary nodule who were current smokers had lower mean scores for all eight domains, regardless of whether the diagnosis was malignant or benign (Lemonnier et al., 2011). For patients with stages I or II lung cancer who underwent surgery, being a current smoker was associated with lower scores for mental health and vitality (Myradal et al., 2003).

Seven studies used disease-specific instruments to measure HRQOL along the continuum of newly diagnosed to long-term survivors. In a study by Balduyck et al. (2011), 70 patients were recruited preoperatively and followed for 12 months postoperatively. Thirty-five were current smokers and six (8%) were recent quitters, meaning they had stopped smoking after diagnosis but before their surgery date. Recent quitters experienced a significantly greater burden of dyspnea at three months and longer impairment of physical functioning at six months. No return to baseline physical functioning, role, or social functioning occurred for current smokers, and a persistent increase in dyspnea occurred during a 12-month period. Among 1,028 long-term lung cancer survivors (77% localized disease), current smokers had significantly worse HRQOL than never smokers at six months to five years after diagnosis. Seven LCSS items (i.e., appetite, fatigue, cough, shortness of breath, lung cancer symptoms, illness affecting normal activities, and overall QOL) were clinically and statistically different for never smokers and current smokers (Garces et al., 2004). Fifty-one newly diagnosed current smokers (32% localized disease) were compared by disease stage and treatment status using the LCSS and FACT-L with long-term lung cancer survivors. The mean scores reported for the FACT-L and the LCSS corresponded to lower HRQOL (Browning et al., 2009). The largest sample of patients (N = 2,442) included 300 current smokers (13%) and 420 recent quitters (17%). Only one LCSS item was used to assess HRQOL. Clinically significant HRQOL deficits were reported by 510 (21%). Smoking status, smoking cessation, and pack years were associated with an overall HRQOL deficit within six months postdiagnosis (Sloan et al., 2012).

Only one study focused on patients with SCLC (N = 223, 58% with extensive disease). Current smokers (53%) were defined as those using tobacco within a year of diagnosis. Compared to a lung cancer-free group, current smoker status had a statistically significant impact on overall HRQOL and individual symptoms on the LCSS. Among those with SCLC, former smokers had the best HRQOL, recent quitters showed improvement, and late or never quitters reported the worst HRQOL (Chen et al., 2012).

Emerging Issues

Two studies expanded the scope of HRQOL research to include family members. Smoking is an important example of a health behavior that clusters in families (Ozakinci, Wells, Williams, Munro, & Donnelly, 2010). Evidence from one cooperative group study suggests that a patient with lung cancer who smokes has, on average, two relatives who smoke (Schilling et al., 1997). For one group of 50 survivors, only 4% were current smokers. However, their relatives were significantly more likely to continue smoking cigarettes (18%) and drink alcohol (71%) (Sarna et al., 2006). Smoking may be a concern for family members who live with patients with lung cancer (Weaver et al., 2011). One study explored the concordance of patient and family member
smoking statuses and their effect on family member HRQOL. In 383 dyads of lung cancer survivors in which one or both members continued smoking, family members reported worse mental health (Weaver et al., 2011).

Environmental tobacco smoke is a carcinogen with serious short- and long-term health effects. Strong evidence suggests that no environmental tobacco smoke exposure level is risk-free (U.S. Department of Health and Human Services [USDHHS], 2006). Regardless of smoking status, exposing patients with lung cancer and their family members to environmental tobacco smoke may adversely affect HRQOL (Sarna et al., 2006). Only two studies examining HRQOL assessed environmental tobacco smoke. In one study of 51 dyads, 20% of lung cancer survivors and 42% of family members acknowledged environmental tobacco smoke exposure. In a smaller study, 21% of lung cancer survivors reported environmental tobacco smoke exposure that correlated with appetite loss on the EORTC QLQ-C30 (Ozturk, Sarihan, Ercan, & Karadag, 2009). Environmental tobacco smoke is known to cause coughing, wheezing, chest tightness, and reduced lung function in adults and should be considered a potential factor when assessing smoking status (USDHHS, 2006) and symptom burden.

### Implications for Clinical Practice

#### Health-Related Quality-of-Life Assessment

Acquiring patient and family member input can assist the healthcare team, including oncology nurses, with understanding the balance between perception of benefit and burden. Assessing HRQOL as part of routine clinical practice is an important new trend (Varricchio & Ferrans, 2010). In clinical settings, such assessments can aid in evaluating a response of interest, planning care, selecting interventions, facilitating informed treatment decisions, and enhancing care to maximize positive outcomes. Oncology nurses can be advocates for integrating HRQOL measurement into patient care settings. Gralla and Hollen (2011) outlined six steps to choosing an HRQOL instrument (see Table 4). In clinical settings, the instrument

### TABLE 5. Assessment of Cigarette Smoking, Environmental Tobacco Smoke Exposure, and Nicotine Dependence

<table>
<thead>
<tr>
<th>Tobacco Use Assessment Questions</th>
<th>Possible Responses</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have you smoked at least 100 cigarettes in your lifetime?</td>
<td>Yes</td>
<td>Smoker</td>
</tr>
<tr>
<td>Do you currently smoke?</td>
<td>Yes</td>
<td>Current smoker</td>
</tr>
<tr>
<td>If yes, how many days of the past seven days have you smoked?</td>
<td>1–7 days</td>
<td>Recent quitter or former smoker</td>
</tr>
<tr>
<td>If no, how long has it been since you last smoked a cigarette, even one or two puffs?</td>
<td>Within the past month to within the past year</td>
<td></td>
</tr>
<tr>
<td>Environmental Tobacco Smoke Exposure Assessment Question</td>
<td>Possible Responses</td>
<td>Classification</td>
</tr>
<tr>
<td>Does anyone (including you) smoke cigarettes in or around your home or car?</td>
<td>Yes, anyone is welcome to smoke in my home or car. Anyone who wants to smoke in my home or car is restricted to smoke in a specific area only. No one is allowed to smoke anywhere in my home or car.</td>
<td>Exposed to environmental tobacco smoke</td>
</tr>
<tr>
<td>Fagerström's Test for Nicotine Dependence* (current smokers only)</td>
<td>Possible Responses</td>
<td>Score</td>
</tr>
<tr>
<td>How soon after you wake up do you smoke your first cigarette?</td>
<td>Within five minutes</td>
<td>3</td>
</tr>
<tr>
<td>Do you find it difficult to refrain from smoking in places where it is forbidden (e.g., church, at the library, etc.)?</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>Which cigarette would you hate most to give up?</td>
<td>The first one in the morning</td>
<td>1</td>
</tr>
<tr>
<td>How many cigarettes per day do you smoke?</td>
<td>10 or fewer</td>
<td>0</td>
</tr>
<tr>
<td>Do you smoke more frequently during the first hours after waking than during the rest of the day?</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>Do you smoke if you are so ill that you are in bed most of the day?</td>
<td>Yes</td>
<td>1</td>
</tr>
</tbody>
</table>

* Sum of six items: A score of less than 4 indicates that the patient is minimally dependent on nicotine, 4–6 indicates moderate dependence, and 7–10 indicates high dependence on nicotine.

should be simple, efficient, and easy to score and interpret. The specific HRQOL information needed should guide instrument selection. For patients with lung cancer, an instrument incorporating symptom measurement may be most useful. The three lung cancer-specific HRQOL instruments (EORTC QLQ-LC13, LCSS, and FACT-L) have varying advantages. The EORTC QLQ-LC13 assesses disease-related symptoms and treatment toxicities, whereas the FACT-L measures psychosocial issues with less comprehensive symptom assessment; both are long questionnaires that may be considered burdensome. The LCSS does not address treatment toxicity but is shorter, simpler, and less burdensome (Earle & Weeks, 2005). For family members, a generic instrument is more appropriate.

### Symptom Management and Palliative Care

Evidence suggests that patients with lung cancer who smoke experience greater symptom distress for a longer time period. Although the dimensions of HRQOL can be discussed separately (i.e., physical, functional, psychological, social, and spiritual), a dynamic interaction exists among them (Borneman & Economou, 2012). Disturbances in physical status and symptom occurrence directly affect all aspects of HRQOL (Leo et al., 2010). Physical concerns such as uncontrolled symptoms and decreased function affect psychological well-being by heightening anxiety, depression, and frustration (Fox & Lyon, 2006; Leo et al., 2010; Stark et al., 2002). For patients with lung cancer, using a lung cancer-specific HRQOL instrument in the clinical setting allows consistent assessment of essential domains so oncology nurses can facilitate adequate symptom management and make referrals to palliative care and other resources.

### Smoking Cessation and Tobacco Smoke Exposure in the Environment

Smoking cessation benefits HRQOL to some degree for both patients and family members facing a lung cancer diagnosis, regardless of disease type, stage, or phase (newly diagnosed or survivor). The issue of environmental tobacco smoke exposure also needs more attention and evaluation.

Standardizing smoking status, exposure, and nicotine dependence assessment would strengthen the usefulness of such information in clinical practice (see Table 5). The evidence suggests that patients with cancer are not getting the assistance needed to stop smoking (Cooley et al., 2009; Morgan et al., 2011). Typically, patients with cancer who try to stop smoking do so without assistance, yielding low success rates (Schnoll et al., 2004). Many cancer treatment settings do not have formal smoking cessation programs. In addition, many health professionals are unaware of the evidence and believe it is too late or too stressful for patients with cancer to stop smoking (Bowles, Tuzzio, & Wiese, 2008; Gritz, Vidrine, & Lazev, 2003; Mazza et al., 2010). However, discussing the risks of continued smoking and the benefits of cessation at the time of diagnosis and over time are critical components of the educational process that surrounds the informed consent process related to treatment decision making. Patients generally do not know the health benefits of smoking cessation specific to the course of their cancer (Ostroff & Dhingra, 2007). Family members also may lack understanding of the impact of their smoking on the patient’s health and ability to remain abstinent (Gritz, Nisenbaum, Elashoff, & Economou, 2012). Disturbances in physical status and symptom occurrence directly affect all aspects of HRQOL (Leo et al., 2010). Physical concerns such as uncontrolled symptoms and decreased function affect psychological well-being by heightening anxiety, depression, and frustration (Fox & Lyon, 2006; Leo et al., 2010; Stark et al., 2002). For patients with lung cancer, using a lung cancer-specific HRQOL instrument in the clinical setting allows consistent assessment of essential domains so oncology nurses can facilitate adequate symptom management and make referrals to palliative care and other resources.

### Smoking Cessation and Tobacco Smoke Exposure in the Environment

Smoking cessation benefits HRQOL to some degree for both patients and family members facing a lung cancer diagnosis, regardless of disease type, stage, or phase (newly diagnosed or survivor). The issue of environmental tobacco smoke exposure also needs more attention and evaluation.

Standardizing smoking status, exposure, and nicotine dependence assessment would strengthen the usefulness of such information in clinical practice (see Table 5). The evidence suggests that patients with cancer are not getting the assistance needed to stop smoking (Cooley et al., 2009; Morgan et al., 2011). Typically, patients with cancer who try to stop smoking do so without assistance, yielding low success rates (Schnoll et al., 2004). Many cancer treatment settings do not have formal smoking cessation programs. In addition, many health professionals are unaware of the evidence and believe it is too late or too stressful for patients with cancer to stop smoking (Bowles, Tuzzio, & Wiese, 2008; Gritz, Vidrine, & Lazev, 2003; Mazza et al., 2010). However, discussing the risks of continued smoking and the benefits of cessation at the time of diagnosis and over time are critical components of the educational process that surrounds the informed consent process related to treatment decision making. Patients generally do not know the health benefits of smoking cessation specific to the course of their cancer (Ostroff & Dhingra, 2007). Family members also may lack understanding of the impact of their smoking on the patient’s health and ability to remain abstinent (Gritz, Nisenbaum, Elashoff, & Holmes, 1991; Ostroff & Dhingra, 2007).

Oncology nurses can play essential roles in the assessment, intervention, and evaluation of smoking cessation practices in clinical settings (Sarna, Bialous, Chan, Hollen, & O’Connell, 2012). Patients with lung cancer and their family members may have higher nicotine dependence levels, more difficulty quitting,
Implications for Practice

- Advocate for the integration of a health-related quality-of-life assessment into clinical settings.
- Monitor patient and family member smoking status and environmental smoke exposure.
- Support development of cessation interventions to enhance health-related quality of life.

and greater stress and emotional distress, thereby suggesting the need for tailored and more intensive interventions (Cataldo, Dubey, & Prochaska, 2010). Given the known risk of environmental tobacco smoke exposure, families should be encouraged to establish smoke-free homes. Many valuable educational resources are available for nurses and patients (see Figure 1). Within diverse practice settings, oncology nurses can readily offer compelling advice to patients and family members about the risks of continued smoking and environmental tobacco smoke exposure as well as the benefits of quitting (Sarna et al., 2012).

Conclusion

Oncology nurses should reflect on the strengths and limitations of research and carefully consider the value of the evidence. Interventions designed to enhance HRQOL may lead to improved HRQOL and other positive outcomes (Sloan, 2011). Continued integration of HRQOL assessment into clinical settings, palliative care programs that assess smoking status and environmental tobacco smoke exposure of all patients with cancer, and availability of smoking cessation programs for patients and family members who smoke will transform the care of patients with lung cancer and their families.

References


Sloan, J.A., Zhao, X., Novotny, P.J., Wampfler, J., Garces, Y., Clark, M.M., & Yang, P. (2012). Relationship between deficits in overall...


For Further Exploration
Use This Article in Your Next Journal Club

Journal club programs can help to increase your ability to evaluate the literature and translate those research findings to clinical practice, education, administration, and research. Use the following questions to start the discussion at your next journal club meeting.

1. What is the clinical problem that is addressed in the article? Why is the problem important to members of the journal club?
2. What were the outcomes or recommendations for practice, education, administration, and/or research based on the evidence presented?
3. Which of the recommendations would you consider implementing in your setting? Why or why not?
4. What would be the next steps in applying the information presented in the article in your setting?

Visit http://bit.ly/1m98Sf3 for details on creating and participating in a journal club. Photocopying of this article for discussion purposes is permitted.